Reg. No.:

Question Paper Code: 30137

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2023.

Third Semester

Electronics and Communication Engineering

EC 3351 - CONTROL SYSTEMS

(Common to: Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

1. Find the transfer function of the network as shown in Fig. 1.

Fig. 1

- 2. List the components of feedback control system.
- 3. Recall the importance of PD control? State the effect of a PD controller on the system performance.
- 4. Find the order of the closed-loop transfer functions for the systems given by
 - (a) $C(s)/R(s) = 10[1+2s+s^2]/[1+3s+s^2+s^3].$
 - (b) C(s)/R(s) = 6[1+2s]/[1+4s].
- 5. List the disadvantages of frequency response analysis.
- 6. List the effects of dominant poles.
- 7. State the angle and magnitude criterion for root locus.
- 8. Define Gain margin.
- 9. Mention the different canonical forms.
- 10. List the advantages of state-variable analysis.

- 12. (a) (i) The unity feedback system is characterized by an open loop transfer function, $G(s) = \frac{K}{s(s+10)}$. Determine gain K, so that the system will have a damping ratio of 0.5 for this value of K. Determine settling time, peak over shoot and time to peak overshoot for a unit step input. (6)
 - (ii) When a unit-step signal is applied, the time response of the second order system is $c(t) = 1 + 0.2e^{-60t} 1.2^{-10t}$. Determine
 - (1) the closed loop transfer function of the system
 - (2) undamped natural frequency. ω_n and
 - (3) damping ratio of the system. (7)

Or

- (b) A unity feedback control system has an open loop transfer function G(s) = 10/(s(s+2)). Find the rise time percentage overshoot, peak time and settling time for a step input of 12 units.
- 13. (a) The loop transfer function of a system is given by $G(s)H(s) = (Ks^2)/(1+0.2s)(1+0.02s)$. Sketch the bode plot for the given system.

Or

- (b) Sketch the polar plot of the function: $G(s)H(s) = (s+2)/[s^2(s+2)(2s+1)]$.
- 14. (a) The unity feedback control system has an open loop transfer function : $G(s)H(s) = K/\left[s(s+4)\left(s^2+4s+20\right)\right].$ Sketch the root locus.

Or

- (b) (i) Examine the stability of the system using Routh's criterion for the characteristic equation of a system given by $s^5 + 2s^4 + 3s^3 + 6s^2 + 10s + 15 = 0.$ (6)
 - (ii) Determine the stability of the following system using Routh's criterion: G(s)H(s)=1/(s+2)(s+4). (7)